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Abstract

The computation of the analytic center of the solution set can be important in linear
programming applications where it is desirable to obtain a solution that is not near the
relative boundary of the solution set. In this work we discuss the effective computation
of the analytic center solution by the use of primal-dual interior-point methods. A
primal-dual interior-point algorithm designed for effectively computing the analytic-

center solution is proposed and theory and numerical results are presented.

1 Introduction

The computation of the analytic-center of the solution set is valuable for some linear pro-

gramming applications where it is desirable to obtain a solution that is not near the relative
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boundary of the solution set (see Charnes, Cooper, and Thrall [3] for such an application). In
this work we discuss the use of primal-dual interior-point methods for effectively computing
the analytic-center solution. .

Because in this work we are interested in using primal-dual interior-point methods for
finding a specific solution (the analytic-center solution), the study of the convergence of the
iteration sequence generated by primal-dual interior-point methods needs to be addressed.
It is relevant to mention that this is not the case for many real-world problems where any
feasible point with the value of the duality gap close to zero is a satisfactory approximate
solution.

The basic primal-dual interior-point method for linear programming was proposed by
Kojima, Mizuno, and Yoshise [11]. Most primal-dual interior-point methods fall into the
general framework of the Kojima-Mizuno-Yoshise algorithm. The first work devoted to the
study of the convergence of the iteration sequence generated by the Kojima-Mizuno-Yoshise
algorithm is Tapia, Zhang, and Ye [18]. Later on, Zhang and Tapia [24] derived conditions
under which this iteration sequence converged to the analytic-center solution, assuming that
the sequence converged. However, the conditions given in [24] are not compatible with the
Tapia-Zhang-Ye conditions for the convergence of the iteration sequencé. The former requires
the centering parameters to be bounded away from zero, while the latter requires that these
same parameters converge to zero.

An interesting variant of the Kojima-Mizuno-Yoshise algorithm was proposed by Mizuno,
Todd, and Ye [16]. The Mizuno-Todd-Ye predictor-corrector algorithm is a path following
algorithm which keeps the iterates in a small neighborhood of the central path. Zhang and
El-Bakry [22] showed that a modified version of the Mizuno-Todd-Ye predictor-corrector
algorithm had the property that the iteration sequence that it generated converged to the
analytic-center. Soon after the result of Zhang and El-Bakry, Gonzaga and Tapia [8] proved
that the Mizuno-Todd-Ye predictor-corrector algorithm itself, without any modification, gen-
erated an iteration sequence which converged to the analytic-center. These are the first
results proving convergence of the iteration sequence to the analytic center solution for any
primal-dual interior-point method.

The Mizuno-Todd-Ye predictor-corrector algorithm has two characteristics that makes it

unappealing for most practical purposes. The first one is that at each iteration the algorithm
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requires the solution of two linear systems of equations where the matrices are of the same
form as those for the Kojima-Mizuno-Yoshise algorithm. Hence, the cost per iteration is twice
that of the Kojima-Mizuno- Yoshise algorithm. The second deficiency is the requirement that
the starting feasible point must be inside a specified 3-neighborhood of the central path.

Recently, Bonnans and Gonzaga [1] gave sufficient conditions for convergence and con-
vergence to the analytic-center of the iteration sequence generated by primal-dual interior-
point algorithms from a general class of algorithms containing the Kojima-Mizuno-Yoshise
and Mizuno-Todd-Ye algorithms. Their result is an extension of the work of Gonzaga and
Tapia [8]. We have found that theoretical results are often limited in practice. Theorem 3.2
in Bonnans and Gonzaga [1] guarantees the theoretical convergence of the iteration sequence
to the analytic-center assuming, among other conditions, that the iterates stay in a small
neighborhood of the central path. However, strong adherence of the iterates to the central
path results in slow performance of the algorithm, especially when this adherence is also
maintained far from the solution set. In addition, we will show that although the iteration
sequence generated by the Kojima-Mizuno-Yoshise algorithm may theoretically converge to
the analytic-center, in practice this convergence is not, for many cases, easy to attain. This
negative behavior is related to the proximity of the iterates to the solution set. If the se-
quence generated by the algorithm approaches the solution set very fast and is far from the
analytic-center the stopping criteria are met before the approximate solution has a chance
of getting close to the analytic-center. Also, the singularity of the Jacobian matrix at the
solution may cause serious numerical problems that affect the computation of the analytic
center when the iterates are very close to the solution set.

Hence, a balance between proximity to the central path and proximity to the solution
set is crucial for an effective computation of the analytic-center of the solution set using a
primal-dual interior-point algorithm.

In this work a modification of the Kojima-Mizuno-Yoshise primal-dual algorithm is pro-
posed. This modified algorithm combines the objectives of approaching the central path
and the solution set to effectively compute the analytic-center solution. We prove that the
proposed algorithm generates an iteration sequence with the property that a subsequence
converges to the analytic-center of the solution set; however in practice we always have that

the entire sequence converges to the analytic center. Moreover, we also prove that with a
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small modification the algorithm achieves polynomial complexity. Finally, we demonstrate
that the numerical behavior of the algorithm is quite good.

This paper is organized as follows. The next section contains some preliminary back-
ground and notation. In Section 3 our proposed primal-dual interior-point algorithm de-
signed for effectively computing the analytic-center is described. The convergence properties
for the algorithm are studied in Section 4. In Section 5 we prove that the algorithm has poly-
nomial complexity if the algorithm is modified in an appropriate way. In Section 6 we study
the numerical behavior of the proposed algorithm. Also, we compare the numerical behav-
ior of the proposed algorithm with the numerical behavior of the Kojima-Mizuno-Yoshise
and the Mizuno-Todd-Ye algorithms. Finally, some conclusions and remarks are given in

Section 7.

2 Preliminaries and Notation

We consider the linear programming problem in the standard form

minimize Lz

subject to Az =1b, >0,

where ¢,z € R*, b € R™, A € R™*"(m < n).
The Karush-Kuhn-Tucker optimality conditions for (1) are

Az — b
F(z,y,z)=| ATy4+z—c | =0, (z,2) >0, (2)
XZe

where X = diag(z), Z = diag(z), and e = (1,1,...1,1)T € R".
The feasibility set of problem (2) is

F={(z,y,2): Az = b, ATy 4+ 2 = ¢, (x, 2) > 0}.

A feasible point (z,y,2) € F is said to be strictly feasible if z and z are strictly positive.
The set of all the strictly feasible points is denoted by F*.



We denote the solution set of problem (2) by
S ={(z,y,2): F(z,y,2z) = 0,(z,z) > 0}.

A point (z,y,z) in S is said to be a strict complementarity solution if z; + z; > 0 for all
1=1,...,n.

The following standard conditions are assumed:
(A1) {r e R": Az =b,x > 0} # 0, and
(A2) {(y,z) eER™" ATy 4 2=c,z > 0} # 0.

(A3) A has full rank m.

We are particularly concerned with the case when S is not a singleton set.

Under the previous assumptions, the solution set S has the following interesting structure:

(i) The set S # 0 is bounded.

(i1) All points in the relative interior of S are strict complementarity solutions and all

points on the relative boundary of S are not.

(i) The zero-nonzero pattern of points in the relative interior of S is invariant.

See El-Bakry, Tapia, and Zhang [6] for proofs.
Therefore, for any (z*,y*, z*) € ri(S), where ri¢(S) denotes the relative interior of S, the

following index sets
It={:2:>0,1<i<n} and IJ = {i:2F>0,1<i<n}
are independent of the choice of (z*,y*, 2*). Moreover, by strict complementarity
I:UIZ"' ={1,2,...,n} and I:ﬂ]:' = 0.

Because of this structure of the solution set S, the solutions in 74(S) may be characterized
as having a maximal number of nonzero components. Among them, there is a solution that

may be thought of as the center-most solution in the sense that it maximizes the product of



the positive components. This solution is called the analytic-center of the solution set and
was studied by McLinden [13] in a general setting and later independently by Sonnevend

[17] in the context of linear programming. Formally, the analytic-center of the solution set

S is defined as:
(z*,y*,2%) = argmax {¢(z,2) : (z,y,2) € S} (3)

where

Y(z,2) = H z; H Z;.

i€l iert

Equivalently, in (3) one can replace ¥(z, z) by its logarithm, i.e.,

Iny(z,z) = Z Inz; + Z In z;.
iert el
The central path associated with problem (2) parametrized by the parameter u is defined as
the collection of points P, = {P.(u); ¢ > 0} where

Po(p) = (z(p), y(1), 2(p)) is a strictly feasible point satisfying X (u)Z(p)e = pe.

This is equivalent to saying that a strictly feasible point (z,y, z) is on the central path (for
some g > 0) if and only if it satisfies 127 = z223 = ... = Tp2p.

These notions of analytic-center and central path are well-defined under assumptions
(A1), and (A2). For more details see McLinden [13], Megiddo [15], and Gonzaga [7].

A B-neighborhood of the central path is defined as ‘

N(B) ={(z,y,2) : (z,y,2) € F, || Xz — pells < Bu}, (4)

where 8 € (0,1) and p = zTz/n.

A very interesting result is Theorem 9 of McLinden [13]. In the case of linear program-
ming, it states that the central path intersects the solution set at the analytic-center, 1.e.,
the central-path point (z(g),y(k), 2(1)) converges to the analytic center (z*,y*, z*) as u con-
verges to zero. See also Proposition 8.2 in Megiddo [15] and the discussion preceding it. This
fact plays a critical role in the development of most primal-dual interior-point algorithms

which attempt to follow the central path.



3 Algorithm

The interior-point algorithm proposed in this work has been designed for effectively comput-
ing the analytic-center of the solution set in linear programming and it is a modification of
the Kojima—-Mizuno—Yoshise algorithm.

The following lemma can be found in Zhang and Tapia [24]. It provides a sufficient
condition for a strictly feasible sequence {(z*,4*, 2¥)} to converge to the analytic-center of

the solution set.

Lemma 3.1 (Zhang-Tapia) Let {(z*,y*, 2*)} be a sequence of strictly feasible points. Let
(al)
ik = (@) 0 )
and
(a2)
1X*25 /1 —ell — 0, (6)

with e = (1,...,1)T € R™.
Then {(z*,y*, 2*)} converges to the analytic-center of the solution set.

Our approach to constructing an algorithm for computing the analytic center is to at-
tempt to enforce conditions (5) and (6).

A key ingredient in the proposed algorithm is the use of the damped Newton method
applied to the perturbed Karush-Kuhn-Tucker conditions

Az — b
Fuz,y,z)=| ATy4+2—-¢ | =0,
XZe — ue

with g > 0. A line-search technique is used as a globalization of Newton’s method. For fixed
pt > 0, the merit function considered is f, : R**™ — R defined by

fulw,y, 2) = |Fu(z,y, 2)/pll3-



Observe that .
Fulry,2) = (X2 — pe)ulls, for (2,y,2) € F. ™
The function f, measures proximity or closeness to the central path at p.

The basic idea of the algorithm is to consider a sequence of gradually shrinking neighbor-
hoods {AN(87)} of the central path with 47 — 0. In the next section we will show that under
certain assumptions the proposed algorithm generates an iteration sequence {(z¥,y¥,z*)}
such that a subsequence (z*/,y*/, 2%) belongs to N(8’). This subsequence is obtained by
considering a sequence of y's and for each fixed y using a damped Newton’s method (with
a line-search globalization strategy) to approximately solve the system F,(z,y,2) = 0.

A description of the algorithm is the following:

Algorithm 3.1 (Long-Step Shrinking-Neighborhood (LSSN) Algorithm) Consider
a strictly feasible point w° = (2°,y°,2%), ¢° € (0,1), and B° € (0,1).
Choose € (0,1/2) and 0 <l <u < 1.

Do until convergence
(0) Set k =0.
(1) Define parameters: Set pu = p* = o®(2*)72*/n and g = pF.
(2) Check prozimity to the central path: If
I X*Z e/n—ella < B (8)

go to (6).
(3) Compute new iterate:

(8.1) Solve the following system for Mw* = (Aak, Ay*, Az*):

Az
Fl(xk’ yk’ zk) Ay | = _F(wk,yk7zk) +n
Az e



(8.2) Choose TF € (0,1) and compute the step-length o* = min(1, 7%&*), where
nk —1
&t = .
min(( X*)-1Azk (ZF)-1AzF)

(3.8) Form the iterate
wk+l — (.’L’k+1,yk+l,zk+1) = (.’Ek,yk,zk) n ak(A"cszyk,Azk).
(4) Line search:

(4.1) If
Fu@*) < fu(wF) + 9tV fu(wF)T (A, Ay, AF)T (9)

go to (5).
(4.2) If not, reduce o := paf, with p € [I,u] and form the iterate

wrtl = ($k+l,yk+1’zk+1) — (wk’yk’zk) + ak(A,Ek,Ayk,Azk).
(4.3) Go to step (4.1).
(5) Setk:=k+1, 85 =8, u¥ = and go to (2).
(6) Set p = p* = o%(z*)T2F/n.
(7) Do (3.1), (3.2), (3.3).
(8) Decrease 3-neighborhood: Choose 1 < gF.
(9) Set k:=k+1 and go to (1).

We note that while condition (8) is not satisfied substeps (3) and (4) of the above algo-
rithm are performed iteratively with the same value of . It is convenient to denote by Z(y)

the corresponding set of indices i.e.,

I(p) = {k: ¥ = p}. (10)

In the next section we will show that the index set Z(yx) is finite for each g chosen by

Algorithm 3.1. This means that under certain assumptions the iteration sequence generated

by the LSSN algorithm, when g > 0 is fixed, approaches the central path in the sense that
condition (8) (or proximity to the central path) is satisfied.
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4 Convergence Properties

In this section we prove that under certain assumptions the LSSN algorithm generates an
iteration sequence which contains a subsequence that converges to the analytic-center of the
solution set. The convergence result is established by showing that under certain assumptions
there exists a subsequence satisfying conditions (5) and (6) of Lemma 3.1. Therefore we
need to study the behavior of the proposed algorithm with respect to the two objectives of
decreasing the gap and centering the iterates. In the following two propositions we study
these issues. In the first proposition we prove that the gap sequence generated by the LSSN
algorithm is a decreasing sequence. In the second proposition we prove that for each fixed
g > 0, the search direction is a descent direction for the function f, and the sequence
{f.(zF,y*, 2*)} generated by the algorithm is a strictly decreasing sequence. Also, we show
that f,(z*,y*,2*) is an upper bound for the Euclidean measure ||—rrr/— e||2, therefore
condition (6) may be established for any sequence of iterates {(z*, y¥, z¥)} with the property

that the corresponding sequence {f.(x*,y*,2*)} converges to zero.

Proposition 4.1 Let {(z*,y*,2%)} and {o*} be generated by the LSSN Algorithm (Algo-
rithm 3.1). Then,

()T = (1 — o (1 — 0¥))(z WT 2% for all k>0 and for some o* € (0,1].

Proof
Define the following sets

I,={k>0: (z*,y*, 2*) satisfies condition (8) in the algorithm },¢.e.
I,={k>0: || X*Z"/pu—ells < B*}, and
Ih={k>1: (zF71, 4%, 2F71) satisfies condition (8) in the algorithm } U {0}.

For each k we denote by k} the largest element in I + such that kf < k and k., the
smallest element in I, such that k <k, .
Let o* for all £ > 0 be defined as

oF =o°/ H a™(1 —o™)), for k & I, U I},

m_k+
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and

of =0° fork € I,V Ig;.

A fairly lengthy but straightforward inductive proof can be used to establish the following

results (a detailed proof can be found in Gonzélez-Lima [9])
(i) o* € (0,1], for all k > 0.
(i) o*=1if a1 =1, for kg I, UI}.
(iii) o*&+ < gFot2 < < ohe <1
From step (3.1) in the algorithm we have
(FtT 1 = (TR - oF) + nafp, for all k > 0. (11)
Then, the remainder of the proof consists in showing that
p=o"(z*)T2*/n, for all k > 0. . (12)

If k € I, U I} then o* = ¢°, and by the construction of the algorithm we have

fk¢l,ul

cp?
From (11) we get

assume without loss of generality that k£ = 0 and k = 2.

(@)T22 = (TNl —a') +na'p. (13)

Multiplying both sides of equation (13) by 02/n, using the definition of o2 and the fact
that

YT 51
,[L = 0'1( 21/ 5
we obtain ( 2)T )
_ alat) e
p=ot—

The use of the same argument in an inductive manner for k < k, completes the proof of

(12). ]
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Proposition 4.2 Let u > 0 be a parameter selected by Algorithm 3.1 and consider the index
set I(p) defined by (10). Then the following properties are satisfied for any k € I(p):

(i) AwF is a descent direction for the merit function

XZe— pe 2

fule,y,z) = "
Iz

2

at w* = (z*,y*, 2¥).

(i) fu(w*t!) < (1 = naf)fu(w*), where n € (0,1) is chosen as in the algorithm.
(iii) || ArGme — ells < fulwh)'/2.
Proof.
Since w* € F* we have X
fu(w*) = “—2||Fu(wk)||§ and
: 2,
V fu(w®) = ;E(F (N E, (w*).
Therefore,

2
VL (w0h) Ak = — 2 FT (k) F (k) = —— || Fy(wh)2 < 0
/t .

prt

and (i) follows.

Part (ii) can be demonstrated in a straightforward manner from condition (9) of the
algorithm.

Now, let us prove part (iii). Because @%sz_ke is the orthogonal projection of X*Z¥e over

the subspace generated by e we have

KTk
leZke - %e < | X*ZFe — pee, = nfu(wh)?,
2
for all k.
Hence,
Xkae 1
_Alre N Rz P )
(@) T n ¢ 2 Sulr) ((xk)Tzk/”
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By Proposition 4.1, p = o*(2*)T2*/n, with oF € (0,1]. Therefore

XFkZke
g < f,(w* 1/2
(IL'k)TZk/Tl € \ - fl (’U) )
Moreover, if oF = 1 the previous inequality is satisfied as an equality. o
q y

The next lemma is needed for proving that under mild assumptions, condition (8) from

the algorithm (proximity to the central path) is always satisfied.
Lemma 4.2 Let u > 0 be a parameter selected by Algorithm 3.1. and assume that
min(X*Z*e) 25725 > 7 /n for all k € T(1) and some 5 € (0, 1),
where I(p) is the index set defined by (10). Then,
I(Ac®, Ay*, ), < M < 400
for all k € IT(p) and some M > 0.

Proof.
Suppose (z*)Tz* > ¢ for some ¢ > 0 and for all k¥ > 0. By hypothesis, z5zF > 7@%?—’1,

hence

xfzfzﬁfor allk>0andi=1,---,n. (14)
n

Let F, = {(a,, y,2) € F 2Tz < (:cO)TzO}. This set is bounded (see the proof of Lemma 2.1
in Zhang and Tapia [24]). Moreover, by Proposition 4.1, the iterates (z*,y*, 2¥) € F,. There-
fore, equation (14) implies that {z*} and {z*} are bounded away from zero for all k¥ > 0.

Let us denote w* = (z¥, y*, z¥) and Aw* = (A, Ayk, A2F). Tt follows from the bounded-

ness of the sequences {z*} and {z*} that there exist constants C' and M; such that

A 0 0
I(F'(w*)) |2 = 0 AT I <C
zZF 0 X*
2
and
[[A* )l < [[(F'(w*)) 7|2l Fu(w?)]l2 < My (15)
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Now, suppose that (z*)T2* — 0. By Theorem 3.2 from Tapia, Zhang, and Ye [18] we have

that
I(Ack, AK)|ly < Crok + Cy(ak)T

for some constants C;,C; > 0, and ¢* defined as in Proposition 4.1 (ak <1).
Equation (16) implies that there exists N; > 0 such that

|(Ax*, Az¥)||, < Ny for all k > 0.
Since we are assuming that rank(A) = m, the matrix AAT is invertible and
AyF = —(AAT)TANS .
Therefore, (17) and (18) imply that thefe, exists Ny > 0 such that
|8%*]l2 < N, for all k> 0.

The final result follows from (15), (17), and (19).

(16)

(17)

(18)

(19)

O

The next lemma states that under some natural assumptions the index sets I(u) are

finite for any g > 0 generated by the LSSN algorithm.

Lemma 4.3 Suppose in the LSSN Algorithm (Algorithm 3.1) the parameter choice {r*} has

been made so that the following condition is satisfied:
(c1) 7% > 7 for all k and some 7 € (0,1).
Now, assume that the points generated by the LSSN Algorithm satisfy

al) min(X*Z*%e)/z* 2* > ~/n for all k and some v € (0,1).
v

Then, the index sets I(y) defined by (10) are finite for any value of i selected by the

algorithm.

Proof. Assume by contradiction that Algorithm 3.1 selects a value of g such that Z(u) is

infinite i.e.,

I() = {N,N+LN+2,...,}

14



for some N > 0. Under this assumption we will prove that
fu(w®) = 0. (20)

where f, is defined by (7) and w* = (z*,y*,2%). It is easily seen that (20) implies that
condition (8) will be satisfied for k£ large enough which contradicts the assumption that Z(u)
is infinite.

Let us call @ = min(1, 7%&*), where

-1
~k k c
‘l pommsg 0 1 .
min((Xk)—lAt’“,(Zk)‘lAzk)’ and 7 ( ’ )

It is known (see the proof of Theorem 3.1 in Zhang, Tapia, and Dennis [25]) that Condition
(c1) and Assumption (al) imply that @ is bounded away from zero.

If of = @ in infinitely many iterations, then by using (ii) of Proposition 4.2 we deduce
immediately that (20) holds. Now, suppose that of < @ for k sufficiently large. It is known
(e.g. see Theorem 6.3.3 in Dennis and Schnabel [4] and the consequent discussion) that the
backtracking line search used in the LSSN algorithm (Algorithm 3.1) guarantees that

Vi (w*)T Aok
[P

where Aw* = (Azk, Ay*, Az¥). According to the proof of Proposition 4.2 we can write

— (), (21)

VF, ()T Mook = ;—3||Fu<wk>||§ = _9f,(wh) (22)

and by virtue of Lemma 4.2, we have that ||Aw¥||; < M for all k. Therefore, equations (21)
and (22) imply that (20) is satisfied in this case as well. This completes the proof of our
lemma. O

Using Lemma 4.3 we will show that if the parameters 3’ that define the neighborhoods
of the central path are chosen so that they converge to zero, then the iteration sequence
generated by Algorithm 3.1 possesses a subsequence converging to the analytic-center of the

solution set. The next theorem formally states this result.

Theorem 4.1 Let {(z*,y*,2*)} be generated by the LSSN algorithm (Algorithm 3.1) with
parameter choices 0° € (0,1), {B*}, and {r*}. Suppose the parameter choices have been

made so that the following two conditions are satisfied:

15



(c1) 7% > 7 >0 for all k and some T € (0,1).

(c2) gF—0.

Assume

(al) min(X*Z*e)/z* 2% > y/n for all k and some ~ € (0,1).

Then, there exists a subsequence of {(x*,y*, z¥)} that converges to the analytic-center of the
) q ¥ g

solution set.

Proof.
By Assumption (al), Condition (c1), and Lemma 4.3, there exists a subsequence {k?}
such that (8) is satisfied at iteration &’ i.e.,

XkiZkie .
—— —ell- < 8%.
’L]/J

According to (iii) of Proposition (4.2) we have,

Xk Zkie .
Hm —ellz < (ful

and by virtue of Condition (c2) it follows that

Xk Zkie

Now, for each j > 0, Proposition (4.1) implies that (zF+1)Tzkit1 < (2R+1)Tk+1 and

(zkH)T 2kt < ¢(2k)T 2% for some ¢ € (0,1). Therefore,
()T 2k = 0. (24)

The remainder of the proof follows from (23), (24), and Lemma 3.1. O

5 Complexity Bound

In this section we address two important issues concerning the LSSN algorithm; namely the

centrality assumption in Theorem 4.1 and the complexity of the algorithm. We prove that
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a modification of the line-search strategy for the LSSN algorithm leads to a modified LSSN
algorithm which possesses polynomial complexity and for which the centrality assumption
of Theorem 4.1 is always satisfied.

In order to facilitate the exposition below let
min(X Ze)

F, = {(z,y, z) strictly feasible : T2/

> ~}, for v € (0,1).

Clearly if (z*,y*, 2*) € F,, for all £ > 0, then the sequence {(z*,y*, 2*)} satisfies Assump-
tion (al) (the centrality assumption) of Theorem 4.1.

For each i > 0, the modified LSSN algorithm presented in this section considers an exact
line-search instead of the backtracking strategy performed by the LSSN algorithm. The exact
line-search is defined so that the iterates generated by the modified LSSN algorithm always
belong to the set F,. Therefore, we demonstrate that the assumption of Theorem 4.1 can
always be enforced. Moreover, since the merit function for the line-search is the Euclidean
norm proximity measure given by f,., a polynomial bound can be derived for the number of
iterations required by the algorithm to satisfy the proximity condition to the central path
given by (8). Hence, polynomial complexity is attainable.

The following is a description of the modified LSSN algorithm.

Algorithm 5.2 (Modified Long-Step Shrinking-Neighborhood (LSSN) Algorithm)
Consider a strictly feasible point w® = (2°,9%2%), ¢° € (0,1) and 8° € (0,1). Choose
v € (0,2 — /2] such that v < min(X92%) |

(T2 /n

Do until convergence
(0) Set k=0.

(1) Set p* = o°(a*)T2F /n.
(2) Set p = u* and B = B*.
(3) Denote wF° = wF.

(4) Setl=0.

(5) Set w = (z,y,2) = w'.
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(6) Check prozimity to the central path: If
X Zefu — ells < (25)
go to (10).
(7) Compute new iterate:

(7.1) Solve the following system for Nw = (Ar, Ny, Az):

Az 0
F'(z,y,z) Ay | = —F(z,y,2)+n
Az €

(7.2) Line search: Find the solution 8 of

1u+0nAl'(luré.7:-y f(a)’ (26)

where £(8) = I1X(0)=(6) /1 — el
(7.8) Form the iterate w* = w + 0w.

(8) Set wh*! = wt and 6% = G,

(9) Setl=1+4+1 and go to (5).

(10) Set I¥ =1 and w*t! = wh"*.

(11) Decrease B-neighborhood: Choose ¥+ < gF.
(12) Set k:=k+1 and go to (1).

Observe that in this modification the iterations where the 3-neighborhoods of the central
path are reached are counted separately from the other iterations.

In order to obtain a polynomial complexity bound for the Modified LSSN algorithm we
need to derive an upper bound for the number of iterations required by the algorithm to
satisfy the central-path proximity condition given in step (6). The idea for bounding the
number of iterations required by the algorithm to approach the central path is to study the
line-search problem (26) and to find an upper bound for its objective function value. The

next lemmas address these issues.
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Lemma 5.4 Let v € (0,1), w = (2,y,2) € F,, and p < z¥z/n.
Also let &Nw = (Ax, Ay, Az) denote the solution of the system

Az 0
F’(x,y,z) Ay = ——F(.’L‘,y,Z)-l'}L 0
Az e

Consider ¢ = %”AXAZe”z where AX = diag(Ar), AZ = diag(Az).
Then, w+ 0w € F, for 0 < 0 < 6* = min(1,(1 —v)/¢).

Proof
Let w(8) = (x(0),y(0), 2(d)) = w + 8 Mw. Then, we have that

X(0)2(0) = (1 — )Xz + e + °AX Az (27)
Since w is strictly feasible AzTAz = 0 and from (27) we obtain
2(0)T2(0)/n = (1L — 0)(zTz/n) + Op. (28)
For any 0 < 8 < 1 we deduce that
X(0)2(6) > 7(1 = )(«"z/n)e + Ope — O pe.
which implies
X(0)2(0) 2 y(x(9)"2(0)/n)e + 0[(1 = 7) — O¢]ue. (29)

It follows from (29) that if 0 < ¢ < 6* = min(1, (1 — 7)/¢) then Z2LAZOI) > o
Now, let us show that

z(8) > 0,2(0) > 0, for all 0 <6 < 6" = min(1, (1 —7)/¢). (30)

For # = 0 we have w(0) = w and (30) is satisfied because of the hypothesis that w € F.,.
Let us suppose by contradiction that (30) is not satisfied for all § € [0,6*]. Then there
exists § € [0,6] and 2 € {1,2,...,n} such that either z;() = 0 or z;(6) = 0. But then from

(29) we get
02> y(2(0)72(0)/n) + 6[(1 — 7) — bg]p. (31)
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From (28) we deduce that z(§)Tz(6)/n > fp so that (31) gives the contradiction 0 > ~0p.
|
Lemma 5.4 states that the minimization problem (26) gives a lower value of the objective

function than does the problem

min f(6). (32)

0<6<06*
The next lemma uses the result obtained from Lemma 5.4 and the optimization problem
(32) in order to obtain an upper bound for the optimal value of (26). This upper bound will
be used later for bounding the number of iterations needed to satisfy (25), i.e. the number

of iterations needed for entering the S-neighborhood of the central path.

Lemma 5.5 Let v € (0,2 — V2], w = (z,y,2) € Fy, p < 2Tz/n and p = ||(Xz — pe)/pllz.
The optimal value of problem (26) is bounded above by

o d _V29(1—7)
= omes{1 - gy 1S

Proof
From (27) we deduce that
X AX Az
£(6) = II(1 = 6)==+ b+ 0*=—=—cll
p u
Xz AX Az
= ||(1_H)(/_¢—8)+02 p I2-

As in the previous lemma, let us denote ¢ = %IIAXAZC”Q. Then for any 0 < 6 < 1 we
obtain the inequality

16) < (=027 = el + 0% (33)
Let p = [[(Xz — pe)/p]l2 and p(6) = (1 — 6)p + 62¢. From (33) we have
7(0) < p(0). | (34)
Let
pt = min o(8). (35)

It is clear from (34) and Lemma 5.4 that the the optimal value of problem (26) is bounded

above by p*. The remainder of the proof consists in finding an upper bound to p*.
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Note that p(0) = f(0) = p. The unconstrained minimum of p(#) = (1 — 8)p + 6%¢ is
obtained for 8 = p/(2¢). We consider four cases.
(1) If p <21 —~) and (1 —7)/¢ < 1 then p/(2¢) =0 < 6" = (1 —+)/¢ and consequently

pt = p(f) = (1- 4—’;;». (36)

We want to find an upper bound for p* in terms of p and 4. To this effect we use the
inequality .
AXAz||, < —|[(XZ2)"Y*(X z — pe)|?,
XAl < (X 2) (X = o)
whose proof can be found in [16]. According to the hypothesis of our lemma w = (z,y,2) €
F, and p < zT2z/n which leads us to the inequality
2

6 < 2557. (37)

Substituting into (36) and using the fact that p < 2(1 — 4) we obtain the following bound

for case (i):
Pt (L= ). , (38)

2v2(1 - 7)
(ii) On the other hand if p < 2(1 — v) and (1 —)/¢ > 1 then 6" = 1 and we may have
either § < 6* = 1 in which case (36) and (38) hold, or § > 6* =1 and then

pt=p(l)=¢ <p/2 (39)

Note that since v < 2 — 1/2 then p/2 is less than the quantity on the right-hand side of
(38), so that (38) holds whenever p < 2(1 — v).

(iii) Now if we suppose that p > 2(1 — ) and (1 — v)/¢ < 1, then p/(2¢) = 6 > ¢* =
(1 —v)/¢, which implies

. -y, (1=9) -7
p=p07) = ( 5 55 <5 (40)
Using (37) we obtain the upper bound
V2y(1 —
s -, | (1)
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(iv) Finally, if we assume that p > 2(1—+) and (1 —+)/¢ > 1, then p/(2¢) = 0>0"=1,
and therefore (39) holds in this case as well. But then so does (38) and (41).

In conclusion, we have shown that (38) holds whenever p < 2(1 — v), while (41) holds
whenever p > 2(1 — ). We end the proof of our lemma by noting that the right-hand side
of (41) is greater than the right-hand side of (38) if and only if p > 2(1 — 7).

O

Lemma 5.6 Let {(z*',y*!, 2%")} and {u*} be generated by the MO(iiﬁed LSSN algorithm
with the parameter choice {3*}.

For each k > 0 let I*¥ denote the iterate such that
IXR 5k — el < B
Then I* is well defined with

= 0(n?/y) and I¥ = O(n/v) + O(log 8*) for k > 1.

Proof
Let pF' = || X*!2%!/u* — e||;. From Lemma 5.5 we have that
ki < (1 ~ kg okl < 91 — 42
p _( aﬁﬁtqﬁﬂ if p* < 2(1 =) (42)
and 5
27(1 —9) ¢ ‘
M“lg(y——Tﬁﬂy— PPt pM > 2(1 — ) (43)

Using (43) and the fact that p**! < pF we obtain the relation

MH<(1 J%ﬂ—v» M:<MJ %ﬁﬂ—vu_

P = P
kA pki0 PO

It follows that /3

29(1 -~
pEl < gk l%- (44)
Therefore, p*! < 2(1 — v) in at most

5 _ (0= 31— 7))ok

V29(1 = 7)

22




steps.
From (42)
P < (1 )b < (1 - ab)2(1 - )

T 2v2(1— )

where a = v/(2v2(1 — 7).
It follows that p*™+ < ¥ in at most

log(512=)

2(1—v)

= o)
log(l — )

(46)
steps.

The following observations are in order. If p*° < 2(1 — v) < B* then I* = ¥ = k=0 If
2(1 — ) > B* then I* = 0 and I* is given by (46). ]

On the other hand, if p° > 2(1 — ) and 2(1 — 7) < 8* we have that I* = I¥ as defined
by (45) and i* = 0.

Hence, I* is well defined and from (45) and (46) we obtain that ¥ < I* 4 [*.

The rest of the proof is devoted to finding bounds for p*°.

For any 0 < p < (2°)T2%/n, it is clear that

1X°2° — pelz < JIX°2°0F < ((2)7")" (47)

Let u® = 0°2°)72%/n. 1t follows from (47) that p°° < n/a®.
According to (45), this implies that

I’ = 0(n?/7). (48)
If 3° is independent of n, say 8° = 1, then
= 0(1) _ (49)
so that
I =0(n’/7). (50)
Now,
1
(PP = X2 = e = o X — el
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1 T T
= (NXF2F — (a7 25 n)elld + (1 — a*" 25 n)?le]l3).

(1*)?
By definition of the Modified LSSN algorithm,

| X525 — uFte||, < BF1uFY, for each k > 1, (51)

and because (:cszk /n)e is the orthogonal projection of X*2z* over the subspace generated
by e we have,
T -
105 2F — (AT fm)ellz < IXF2E — el (52)

: T :
Since u* = o%z*" 2¥ /n we obtain

(PO < =z (BT ) 4 m(pk = o*7 2 fn)?)

(k)

(lti)‘l ((ﬂk—l)2(:cszk/n)2 +n(l— 0'0)2(55kT2k/n)2)'
It follows that :
(B7)+ (L —0%n

(0-0)2

(P*%)? < (53)

where 3* = maxx>o B~
Finally, from (45), (46), (53), and ¥ < I¥ + I¥ we deduce that I¥ = O(n/v) + O(log %),
for £ > 1. m]
The previous lemma gives an upper bound for the number of iterations required by the
Modified LSSN algorithm to enter the S-neighborhood of the central path. The polynomial
complexity bound for the algorithm is obtained by assuming a certain rate of decrease for
B* and by finding a bound on the number of iterations required by the algorithm to reduce

the gap to a given tolerance. This is done in the next theorem.

Theorem 5.2 Let {(z*,y*, 2*)} and {y*} be generated by the Modified LSSN algorithm with
{(2°,y°,2°)} a strictly feasible point and the parameter choices {B*}.
Choose € > 0 and o°® € (0,1) such that c°(8* + 1) < 1 where * = maxyxo B*. Then,

(i) T 2% < ¢ in at most k. steps, with k. = O(log(z®)T2°/¢).
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(ii) Let B* be chosen as B* = (8°)*. Then, the Modified LSSN algorithm iteration com-

lexity is
P Y (2 T.0

O(n?/7) + O(fn/y + log )

(iii) Let B* be chosen as g* = 5(7:?37 Then, the Modified LSSN algorithm iteration com-
plexity 1s x

0\T ,0 0\T.,0

0(n/1) + O([n +log(log =2 )=

)] log(

)-

Proof

From (51) we have that 251251 < (1 4+ pM)uF = (1 + ,Bk)aokazk/n. for all £ > 0.
Therefore, z* Tk < n*(2°)T2° where n = (1 + $*)o® with #* = maxi»0 ¥ and 7 < 1 by
hypothesis. Hence, z¢" ¥ < € in at most k. = O(log(z°)T2°/).

From Lemma 5.6

Z F=0(- log

( ['O)TZO

)+ 0og(L ) i gt = (g (54)

and
ke n
S 1% = O(=log(
k=1 g

Ttems (i4) and (44i) follow from (54), (55) and the fact that I° = O(n?/v) (see Lemma 5.5).
O

(IEO)TZO ( O)T 0 0 TZO 1

)) + O(log(*= . )log(log((:E ) ) if B* = AT

(55)

Corollary 5.1 Consider problem (1) and assume the entries of the data A, b, c are integers
with L being the bit length of that input data.

Let {(2°,4°,2°)} be a strictly feasible point such that (z°)T2° < 2%L.

Then, iteration complexity of the Modified LSSN algorithm is

O(n?/y) + O([n/vy + LIL), if B = CB*! for k > 1 and for some C € (0,1)

and

1
O(n’/v) + O([n/y +log(L)IL), if B* = O(+) for k 2 1.
Proof Let € = 272L. The proof follows directly from Theorem 5.2 since log ix—ol:—z—o— <4L. O

25



6 Numerical Experience

In this section we discuss the numerical results obtained from applying the LSSN algorithm to
a subset of the NETLIB test problems. We compare the performance of the LSSN algorithm
with the performance of the Kojima-Mizuno-Yoshise algorithm and the Mizuno-Todd-Ye
algorithm.

Our preliminary numerical experimentation showed that the LSSN algorithm as presented
in Section 3 (Algorithm 3.1) seems to perform better than the Modified LSSN algorithm in
terms of number of iterations. Therefore, the results in the present section use the LSSN
algorithm without modification (Algorithm 3.1). At this juncture we believe that the line-
search modification introduced in Section 5 has more of a theoretical value than a practical

value. However, more research will be done on this issue.

6.1 Implementation Issues

The experiments were performed in 64 bit arithmetic on a Sun 4/model 670-120 using codes

implemented in MATLAB.

6.1.1 Stopping Criteria

The algorithm is terminated when

v [1E5ER = VTR AZF — by AT + 2 el X el o
L+ Ty 7 T4 lalle "1+ [yl + 124007 (@))Te ) =

or when the number of iterations reaches 200.

6.1.2 Parameter Choices.

The line-search strategy (backtracking) defined in step (4) of the LSSN algorithm was im-
plemented using the value n = 10~* and a fixed value p = 1/2.

In all problems, the parameters 7* were chosen as 7% = 1 — min{0.05,0.05(z=*)T2*}.
Therefore 7% = 0.95 far away from the solution set and is closer to 1 when the duality gap

is small.



The step-lengths for the Mizuno-Todd-Ye algorithm were obtained following Ye, Giiler,
Tapia, and Zhang [20].

The parameters 37 were chosen, in general, as 8¥t! = (3*)2. Some minor variations, based
on heuristics, were considered in choosing 3’ when the iterates were close to the solution
set. In the numerical results presented in this section 8 = 8% = 0.25 for the Mizuno-Todd-
Ye and LSSN algorithms. The choice of 8° = 0.25 was made so that we could compare
the Mizuno-Todd-Ye algorithm with the LSSN algorithm. Our experience has shown that
numerical efficiency for the LSSN algorithm can be substantially improved by choosing S
significantly larger than 0.25.

6.1.3 Starting iterates

The starting points for the LSSN and Kojima-Mizuno-Yoshise algorithms are obtained fol-
lowing Lustig, Marsden, and Shanno [12] and are not necessarily feasible.

The algorithms generate a sequence of iterates that approach feasibility and have the
property that the duality gap goes to zero. For the LSSN algorithm, the infeasibility of the
starting iterates should be considered a computational convenience since in all the problems
tested when the initial S-neighborhood of the central path is entered for the very first time
the iterates are already feasible. Thus, equivalent experimentation could have been done
starting the algorithm from the strictly feasible iterates obtained in the process.

A very interesting feature of the LSSN algorithm is that it provides a way of computing
a point in a B-neighborhood of the central path, for any 5 € (0,1). In this work we used
this feature of the LSSN algorithm for computing the starting point for the Mizuno-Todd-Ye

algorithm.

6.2 Numerical Results

Our numerical results are summarized in the following three tables. Table 1 studies the
effect of the choice of the parameter o° in the performance of the LSSN algorithm. Table 2
compares the performance of the LSSN and the Mizuno-Todd-Ye algorithms. The starting
point is the same for both algorithms and the iterations are counted from that point. Ta-

ble 3 shows the performance of the Kojima-Mizuno-Yoshise algorithm for fixed values of the
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centering parameters o*.

Observe that the worst performance of the LSSN algorithm is obtained for very small or
very large values of ¢°. On one hand, if the parameter ¢° is small (e.g. ¢® < 0.0001 for most
of the problems we considered) the number of iterations exceeds the allowable maximum
number of 200 iterations. This large number of iterations is due to the fact that the iterates
approach the solution set very fast but are still far away from the central path. Because of
the proximity of the iterates to the solution set the Jacobian matrix is very ill-conditioned
and the step-lengths become very small. On the other hand, comparing the values of ¢° for
which the algorithm converges, it can be observed that the closer the value of the parameter
0° is to 1, the stronger is the adherence of the iterates to the central path and the slower
is the performance of the algorithm (as should be expected from the theory). Observe from
Table 1 that ¢® equal to 0.01 seems to be a good choice to use in implementations.

Notice that the number of iterations required to enter the initial §—neighborhood does
not seem to follow, in general, a constant pattern with respect to the values of o°. However,
when the line-search strategy is activated, the larger the value of ¢° the larger is the number
of times the step must be decreased (by backtracking). We believe this behavior reflects the
fact that the larger the value of o°, the more difficult it is for the LSSN algorithm to obtain
appropiate decrease in the merit function, since a higher priority is placed on centrality.

For most of the problems tested, the Mizuno-Todd-Ye algorithm requires a larger number
of linear systems to be solved to converge than does the LSSN algorithin, as can be observed
from Table 2. Recall the cost per iteration of the Mizuno-Todd-Ye algorithm is twice that
of the LSSN algorithm. Actually, for many of the problems the Mizuno-Todd-Ye algorithm
also requires a larger number of iterations to converge than does the LSSN algorithm. This
result seems to be a consequence of the long steps performed by the LSSN algorithm. An
illustration of the behavior of the Mizuno-Todd-Ye and LSSN algorithms with respect to
closeness to the central path and the duality gap is given by Figures 1 and 2 for problem
SHARE2B.

Finally, Table 3 shows that the Kojima-Mizuno-Yoshise algorithm seems not to be con-
verging for several of the problems considered. This is a significant disadvantage when
compared with the LSSN and the Mizuno-Todd-Ye algorithms. The lack of convergence of

the Kojima-Mizuno-Yoshise algorithm is due to the fact that the iterates do not stay in

28



Table 1: Study of the effect of different choices of the parameter ¢ for the LSSN algorithm.

[ PROBLEM | «7 [ k! [ kep? J1s® | fep? ]
AFIRO 0.00001 20 15 0 2
0.0001 21 13 0 3
0.001 22 11 0 3
0.01 20 7 0 3
0.1 25 8 0 5
0.5 €5 8 0 18
BLEND 0.00001 | NC® - -
0.0001 NC - - -
0.001 NC - - -
0.01 a0 12 0 3
0.1 40 12 2 6
0.3 71 25 34 11
0.5 119 50 132 19
3CSD1 0.00001 NC - - - *
0.0001 NC - - -
0.001 NC - - -
0.01 25 4 0 4
0.1 34 a 0 7
0.5 76 3 0 21
SHARE2B 0.00001 28 21 [ 2
0.0001 NC - - -
0.001 28 13 0 3
0.01 33 12 0 3
0.1 41 13 0 6
0.5 121 57 145 17
SCTAP1 0.00001 | NC - - -
0.0001 NC - - -
0.001 NC - - -
0.01 44 10 0 4
0.1 61 18 17 7
0.5 123 a9 81 20
LOTFI 0.00001 [ NC - - -
0.0001 NC - - -
0.001 NC - - -
0.01 96 61 86
0.1 109 63 87 8
0.5 180 70 155 21
SCAGR7 0.00001 33 21 (] 2
0.0001 35 18 V] 3
0.001 32 13 (4] 3
0.01 36 11 o 4
0.1 46 10 4] 7
0.5 77 10 1] 16 -
SCAGR2s 0.00001 43 32 [1] 2
0.0001 40 26 0 3
0.001 40 20 Q 3
0.01 37 14 0 3
0.1 45 11 0 [
0.5 77 11 (4] 16

TNumber of Iterations.

2Number of iterations taken to enter the initial B-neighborhood of the central path.
3Number of times the linesearch strategy decreases the step length.

4Nurber of times p is decreased.

5The allowable maximnin number of 200 iterations is reached.
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Table 2: Comparison between the Mizuno-Todd-Ye and LSSN algorithms in terms of number

of linear systems solved.

[ PROBLEM [ M-T-¥ [ LssN | a0
AFIRO 16 11 0.001
28 13 0.01
32 17 0.1
BLEND 52 18 0.01
54 28 0.1
54 69 0.5
SCSD1 62 21 0.01
70 73 0.5
SHARE2B 18 15 0.00001
42 15 0.001
58 21 0.01
62 28 0.1
64 64 0.5
SCTAP1 122 43 0.1
90 34 0.01
LOTFI 106 46 0.1
SCAGRT 52 19 0.001
84 67 0.5
SCAGR25 80 34 0.1
SDSD6 NcT 47 0.1 .

I The allowable maximum number of 200 iterations is reached

Table 3: Performance of the Kojima-Mizuno-Yoshise algorithm.

I PROBLEM I Number of Iterations l ok J

AFIRO Nct 0.3

39 0.5

105 0.8
BLEND NC 0.3

NC 0.5

NC 0.8
SHARE?2B NC 0.3

NC 0.5

NC 0.8
LOTFI NC 0.5

NC 0.8
SCAGR7 39 0.3

56 0.5

146 0.8
SCAGR25 41 0.3

53 0.5

138 0.8 M

The allowable maximurn number of 200 iterations is reached.
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or return to a f-neighborhood of the central path after such a neighborhood is reached.
The poor performance of the Kojima-Mizuno-Yoshise algorithm is a consequence of the fact
that our stopping criteria reflects convergence to the analytic center, and apparently this
algorithm does not in general converge to the analytic center.

In the problems where the Kojima-Mizuno-Yoshise algorithm converges, the number of

* increases, as should be expected. The

iterations increases as the value of the parameter o
smallest number of iterations required by the Kojima-Mizuno-Yoshise algorithm to converge
is always larger than the smallest number of iterations required by the LSSN algorithm to
converge for the same problem. It is very interesting to note that for those problems where
the Kojima-Mizuno-Yoshise algorithm converges, the line-search strategy is never activated
when applying the LSSN algorithm, i.e. they seemed to be rather easy problems. In fact,

we have found out that those problems share the feature of having a unique primal solution.

7 Conclusions

In this work a modification of the Kojima-Mizuno-Yoshise primal-dual algorithm is proposed.
The goals of approaching the central path and the solution set are combined to design an
algorithm which effectively computes the analytic-center solution. The iterates generated by
the Long-Step Shrinking-Neighborhood (LSSN) algorithm proposed in this research approach
the solution set while approaching the central path. The approach to the central path is done
in such a way that we attempt to take full Newton steps (long steps) as much as possible.
Two aspects of the algorithm facilitate this objective. Firstly, when the duality gap is large
we choose 3-neighborhoods that are large. Secondly, once we reach a #-neighborhood our
subsequent step is not required to stay in a f-neighborhood, i.e. is not required to stay
near the central path. However, as might be expected from the Gonzaga and Tapia [§]
convergence theory for the Mizuno-Todd-Ye algorithm, near the solution when the duality
gap is small full Newton steps actually stay close to the central path and often fall in our
chosen B-neighborhoods; eventhough the S-neighborhoods are shrinking.

Let us now briefly make some comments concerning shrinking B-neighborhoods versus

fixed B-neighborhoods as employed in the Mizuno-Todd-ye algorithm. It is clear that far
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from the solution when the duality gap is large it is not computationally effective to enforce
excessive fidelity to the central path; hence we should allow for large #-neighborhoods in this
situation. Our convergence theory given in Section 4 for the algorithm described in Section 3
is based on the Zhang-Tapia [24] sufficient condition for convergence to the analytic center.
This theory requires the satisfaction of condition (a2) given in (6); which says that for the
shrinking 3-neighborhoods we must have the sequence of 3’s converging to zero. It is also
worth noting that our polynomial bound complexity theory given in Section 5 requires the
sequence of A’s to converge to zero. Quite recently Bonnans and Gonzaga [1] derived an
elegant theory giving conditions that are sufficient for convergence to the analytic center.
Their theory is less restrictive than the Zhang-Tapia [24] theory and does not require the
sequence of 3’s to converge to zero. Their theory suggests that in our algorithm, near the
solution when the duality gap is small # can be held fixed. Very recently while this paper
was in review we performed some preliminary numerical investigations with a version of our
algorithm which left 3 fixed near the solution. The results were quite satisfactory. Hence
it seems as if the Bonnans-Gonzaga theory could be used to establish convergence to the
analytic center for a version of our algorithm that allows fixed § when the duality gap 1s
small. Moreover, the Bonnans-Potra [2] convergence theory, which extends the Bonnans-
Gonzaga theory to infeasible iterates, could be used to analyze our algorithm in the case of
infeasible iterates. Recall, as we previously mentioned, that in all our numerical experiments
feasibility was established in the first -neighborhood pass and the iterates remained feasible
in subsequent B-neighborhood passes. Hence, the theory presented in Section 4 is applicable.

A very interesting feature of the LSSN algorithm is that it gives a practical way of
finding a point in a neighborhood of the central path. Hence, the LSSN algorithm can
be used for finding a starting point for the Mizuno-Todd-Ye algorithm and comparisons
of the performances of the Generic Kojima-Mizuno-Yoshise, Mizuno-Todd-Ye, and LSSN
algorithms have been established.

Numerical results showed that the Generic Kojima-Mizuno-Yoshise algorithm is not ad-
equate for computing the analytic-center solution even if the centering parameters o* are
chosen close to one and the iterates reach the central path at some iteration. The Mizuno-
Todd-Ye algorithm and the LSSN algorithm are, in general, both capable of computing the
analytic-center. The LSSN algorithm compares favorably to the Mizuno-Todd-Ye algorithm
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regarding total cost. In this work we proposed the use of the LSSN algorithm for finding
the starting point for the Mizuno-Todd-Ye algorithm, but different approaches of obtaining
this initial point may lead to better performance of the Mizuno-Todd-Ye algorithm. The
performance of the LSSN algorithm strongly depends on the choice of the parameter o°.
The performance of the Mizuno-Todd-Ye algorithm depends on the starting point and does
not involve parametric choices, thus, in this sense, the Mizuno-Todd-Ye algorithm is less
complicated than the LSSN algorithm. However, it was our experience that while in theory
the Mizuno-Todd-Ye algorithm is guaranteed to converge to the analytic center, in practice
this is not necessarily the case (obviously due to the ill-conditioning encountered near the
solution set).
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